ГЛАВА 1. ЭЛЕКТРИЧЕСКАЯ ЦЕПЬ И ЕЕ ОСНОВНЫЕ ЗАКОНЫ

§ 4. Электрическое сопротивление и проводимость

Физическая природа электрического сопротивления. При движении свободных электронов в проводнике они сталкиваются на своем пути с положительными ионами 2 (см. рис. 10, а), атомами и молекулами вещества, из которого выполнен проводник, и передают им часть своей энергии. При этом энергия движущихся электронов в результате столкновения их с атомами и молекулами частично выделяется и рассеивается в виде тепла, нагревающего проводник. Ввиду того что электроны, сталкиваясь с частицами проводника, преодолевают некоторое сопротивление движению, принято говорить, что проводники обладают электрическим сопротивлением. Если сопротивление проводника мало, он сравнительно слабо нагревается током; если сопротивление велико, проводник может раскалиться. Провода, подводящие электрический ток к электрической плитке, почти не нагреваются, так как их сопротивление мало, а спираль плитки, обладающая большим сопротивлением, раскаляется докрасна. Еще сильнее нагревается нить электрической лампы.
За единицу сопротивления принят ом. Сопротивлением 1 Ом обладает проводник, по которому проходит ток 1 А при разности потенциалов на его концах (напряжении), равной 1 В. Эталоном сопротивления 1 Ом служит столбик ртути длиной 106,3 см и площадью поперечного сечения 1 мм2 при температуре 0 °С. На практике   часто   сопротивления   измеряют   тысячами ом — килоомами (кОм) или миллионами  ом — мегаомами (МОм).   Сопротивление обозначают буквой R(r).

Проводимость. Всякий проводник можно характеризовать не только его сопротивлением, но и так называемой проводимостью — способностью проводить электрический ток. Проводимость есть величина, обратная сопротивлению. Единица проводимости называется сименсом (См). 1 См равен 1/1 Ом. Проводимость обозначают буквой G (g). Следовательно,

(4)

Удельное электрическое сопротивление и проводимость. Атомы разных веществ оказывают прохождению электрического тока неодинаковое сопротивление. О способности отдельных веществ про­водить электрический ток можно судить по их удельному электрическому сопротивлению. За величину, характеризующую удельное сопротивление, обычно принимают сопротивление куба с ребром 1 м. Удельное электрическое сопротивление измеряют в Ом-м. Для суждения об электропроводности материалов пользуются также понятием удельная электрическая проводимость. Удельная электрическая проводимость измеряется в сименсах на метр (См/м) (проводимость куба с ребром 1 м). Часто удельное электрическое сопротивление выражают в ом-сантиметрах (Ом - см), а удельную электрическую проводимость — в сименсах на сантиметр (См/см). При этом 1 Ом-см = 10-2 Ом-м, а 1 См/см = = 102 См/м.

Проводниковые материалы применяют, главным образом, в виде проволок, шин или лент, площадь поперечного сечения которых принято выражать в квадратных миллиметрах, а длину — в метрах. Поэтому для удельного электрического сопротивления подобных материалов и удельной электрической проводимости введены и другие единицы измерения: удельное сопротивление измеряют в Ом-мм2/м (сопротивление проводника длиной 1 м и площадью поперечного сечения 1 мм2), а удельную проводимость  — в См-м/мм2 (проводимость проводника длиной 1 м и площадью поперечного сечения 1 мм2).
Из металлов наиболее высокой электропроводностью обладают серебро и медь, так как структура их атомов позволяет легко передвигаться свободным электронам, затем следует золото, хром, алюминий, марганец, вольфрам и т. д. Хуже проводят ток железо и сталь.
Чистые металлы всегда проводят электрический ток лучше, чем их сплавы. Поэтому в электротехнике используют преимущественно очень чистую медь, содержащую только 0,05 % примесей. И наоборот, в тех случаях, когда необходим материал с высоким сопротивлением (для различных нагревательных приборов, реостатов и пр.) применяют специальные сплавы: константан, манганин, нихром, фехраль.
Следует отметить, что в технике, кроме металлических проводников, используют и неметаллические. К таким проводникам относится, например, уголь, из которого изготовляют щетки электрических машин, электроды для прожекторов и пр. Проводниками электрического тока являются толща земли, живые ткани растений, животных и человека. Проводят электрический ток сырое дерево и многие другие изоляционные материалы во влажном состоянии.
Электрическое сопротивление проводника зависит не только от материала проводника, но и его длины l и площади поперечного сечения s. (Электрическое сопротивление подобно сопротивлению, оказываемому движению воды в трубе, которое зависит от площади сечения трубы и ее длины.)
Сопротивление прямолинейного проводника

(5)

Если удельное сопротивление выражено в Ом-мм2/м, то для того, чтобы получить сопротивление проводника в омах, длину его надо подставлять в формулу в метрах, а площадь поперечного сечения — в квадратных миллиметрах.

Пример 1. Определить сопротивление медного провода длиной 100 м и площадью поперечного сечения 2 мм2; удельное сопротивление меди 0,0175 Ом-мм2/м
Решение. По формуле получаем:
R=0,0175 х 100/2 = 0,875 Ом.

Зависимость сопротивления от температуры. Электропроводность всех материалов зависит от их температуры. В металлических проводниках при нагревании размах и скорость колебаний атомов в кристаллической решетке металла увеличиваются, вследствие чего возрастает и сопротивление, которое они оказывают потоку электронов. При охлаждении происходит обратное явление: беспорядочное колебательное движение атомов в узлах кристаллической решетки уменьшается, сопротивление их потоку электронов понижается и электропроводность проводника возрастает.
В природе, однако, имеются некоторые сплавы: фехраль, константан, манганин и др., у которых в определенном интервале температур электрическое сопротивление меняется сравнительно мало. Подобные сплавы применяют в технике для изготовления различных резисторов, используемых в электроизмерительных приборах и некоторых аппаратах для компенсации влияния температуры на их работу.
О степени изменения сопротивления проводников при изменении температуры судят по так называемому температурному коэффициенту сопротивления а. Этот коэффициент представляет собой относительное приращение сопротивления проводника при увеличении его температуры на 1 °С. Сопротивление металлического проводника Ri при любой температуре t

(6)

где Ro— сопротивление проводника при некоторой начальной температуре t0 (обычно при +20 °С), которое может быть подсчитано по формуле (5); t — to — изменение температуры.

Пример 2. Определить сопротивление медного контактного провода  длиной 10 км и площадью сечения 100 мм2 при 50°С.
Решение. По формуле (5) при 20 °С
R0 = 0,0175 х 10 000/100 = 1,75 Ом.
По формуле (6) при 50 °С
Ri = R0[1+ a (t — t0)] = 1,75 [1+0,004(50 - 20)] = 1,96 Ом.

Свойство металлических проводников увеличивать свое сопротивление при нагревании часто используют в современной технике для измерения температуры. Например, при испытаниях тяговых двигателей после ремонта температуру нагрева их обмоток определяют измерением их сопротивления в холодном состоянии и после работы под нагрузкой в течение установленного периода (обычно в течение 1 ч).

Исследуя свойства металлов при глубоком (очень сильном) охлаждении, ученые обнаружили замечательное явление: вблизи абсолютного нуля (— 273,16 °С) некоторые металлы почти полностью утрачивают электрическое сопротивление. Они становятся идеальными проводниками, способными длительное время пропускать ток по замкнутой цепи без всякого воздействия источника электрической энергии. Это явление названо сверхпроводимостью. В настоящее время созданы опытные образцы линий электропередачи и электрических машин, в которых используется явление сверхпроводимости. Такие машины имеют значительно меньшие массу и габаритные размеры по сравнению с машинами общего назначения и работают с очень высоким коэффициентом полезного действия. Линии электропередачи в этом случае можно выполнить из проводов с очень малой площадью поперечного сечения. В перспективе в электротехнике будет все больше и больше использоваться это явление.

<<<<<Предыдущая страница ------------------ Читать дальше >>>>>

загрузка...